subspaces of R"

Let W be some <u>subset</u> of R, so W is a collection of (column) vectors.

DEF W is a subspace of R" if 3 things are true:

- 1 The 0-vector is in W.
- CA ("closed under addition") If \underline{u} and \underline{v} are any two elements of \overline{w} , then the linear combination $a\underline{u} + b\underline{v}$ is also in \overline{w} (Succinctly: $\underline{u}, \underline{v} \in \overline{w} \Rightarrow \underline{u} + \underline{v} \in \overline{w}$)
- ("closed under scalar multiplication") If \underline{u} is any element of W_{τ} , then any scaled multiple $k\underline{u}$ is still in W_{τ} . (Suscinctly: $\underline{u} \in W \Rightarrow k\underline{u} \in W$ for any $k \in \mathbb{R}$
 - * Technically, the entire set \mathbb{R}^n is a subspace of itself, since O, CD, CS are all true for \mathbb{R}^n as a whole.
 - · To distinguish that technicality, sometimes we may speak of "proper subspaces", which are subspaces of R" and are smaller than "the entire R"".
 - · Let's work out several examples of verifying the 3 subspace conditions.

 $(\underline{\varepsilon_{x}})$: Within $\nabla = \mathbb{R}^2 = \{[x] : x,y \in \mathbb{R}\},$

let W be the set of all vectors which are scalar multiples of the vector $\underline{x} = [1]$. That is, $W = \{c\underline{x} : c \in \mathbb{R}\}$.

Is Wa subspace of IR²?

1) $0 \le e \le ?$ Yes, $0 \le is$ in $wide [6] = 0 \cdot [i]$ = 0 u

2) Closed under addition?

If \underline{u} and \underline{v} are generic vectors from \overline{W} , then by definition of "being in \overline{W} ," it must be that $\underline{u} = a\underline{x}$ and $\underline{v} = b\underline{x}$, for some scalars a and b.

Is $\underline{u}+\underline{\vee}$ still a multiple of \underline{x} ? (i.e. is $\underline{u}+\underline{\vee}$ still in \underline{w} ?)

 $\underline{\forall es}$, b/c $\underline{u} + \underline{v} = a\underline{x} + b\underline{x} = (a+b)\underline{x}$

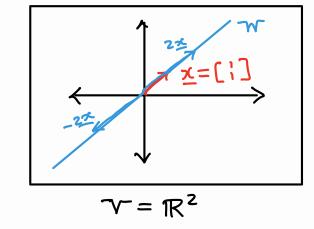
3) Closed under scalar multip.?

If u is a generic vector from W, then (by defin. of "being in W'') $\underline{u} = a\underline{x}$ for some a.

Then if b is any other scalar, $b\mu = b(ax) = (ba)x$,

which is clearly still a multiple of \underline{x} , so be $\underline{\epsilon}$ W still. Thus, yes, W closed under scalar multiplication

Since all (3) are checked, W is a subspace of \mathbb{R}^2 .



(\mathcal{E}_{x} 2) Within \mathbb{R}^{2} , is the set of vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ having y=1 a subspace? That is, is $W = \{\begin{bmatrix} x \\ y \end{bmatrix}: x \in \mathbb{R}, y=1\}$ (alt: $W = \{\begin{bmatrix} x \\ 1 \end{bmatrix}: x \in \mathbb{R}\}$)

a subspace of \mathbb{R}^{2} ?

- × 1) $\underline{\emptyset} \in \mathbb{W}$? No, bk $\underline{\emptyset} = [0]$ does not fit the condition $\underline{y} = 1$.
- × 2) Closed under addition?

 generic

 Taking $\vee \underline{u}$ and $\vee \cdot from \, \mathcal{W}$, they must be $\underline{u} = \begin{bmatrix} a \\ 1 \end{bmatrix}, \, \underline{v} = \begin{bmatrix} b \\ 1 \end{bmatrix}$ (for some a, b)

 Then $\underline{u} + \underline{v} = \begin{bmatrix} a + b \\ 2 \end{bmatrix}$, which does not fit the

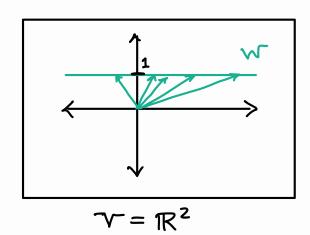
condition for being in W, so $\underline{u}+\underline{v}$ has left W, i.e. W is not closed under addition.

× 3) Closed under scalar multiplication?

Easy to see that No, Wis not closed under s.m. either.

We could have stopped after 1 failure, but this was for illustration.

Wis not a subspace of R2



(Ex 3) Let W be the set of all <u>linear</u> combinations of $x = \begin{bmatrix} 3 \end{bmatrix}$ and $y = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$, (that means all combinations ax + by with $a,b \in \mathbb{R}$) (* This means $W = span\{x,y\}$)

a.k.a. $W = \begin{cases} ax + by : a,b \in \mathbb{R} \end{cases}$ or $= \begin{cases} a[3] + b[-1] : a,b \in \mathbb{R} \end{cases}$ or $= \begin{cases} 3a - b \\ 1a - 0b \end{cases} : a,b \in \mathbb{R} \end{cases}$

Is this a subspace of IR2?

1) $\emptyset = [\[\[\]] \in \mathbb{W} \]$? $\underline{\text{Yes}}_{1}$, because \emptyset is the combination $\emptyset = 0 \cdot \underline{\times} + 0 \cdot \underline{y}$.

12) Closed under addition?

Generic $\underline{u}, \underline{v}$ from W: $\underline{u} = a\underline{x} + b\underline{y}, \underline{v} = c\underline{x} + d\underline{y}$

Sum
$$\underline{u} + \underline{v} = a\underline{x} + b\underline{y} + c\underline{x} + d\underline{y}$$

$$= (a+c)\underline{x} + (b+d)\underline{y},$$

this still fits the description of a linear combination of z and y. So $\frac{1}{2}$

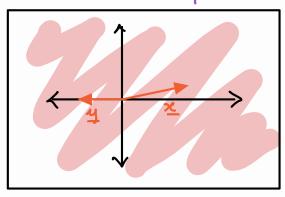
13) Closed under scalar multip?

Generic $u \in W \rightarrow u = ax + by$ k scalan: $ku \in W$?

ku = k(az + by) = (ka)x + (kb)y

which is still in W, so Yes

3 "Yes" => W is a subspace of IR2.



~= 1R2

w actually covers all of IR² (more on that later).

 $\underline{\mathcal{E}x}: \quad \mathcal{W} = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : 3x - 2y - z = 0 \right\}$

We can check that this is a subspace in two ways (really there is no difference in the two ways)

Method 1: Check 3 conditions.

②? The vector [3] is in W because 3x-2y-2=0is valid. the condition of being in W is that z = 3x - 2y, which means that the vector's 3^{rd} coordinate must be $= 3(1^{st} \operatorname{coord}) - 2(2^{rd} \operatorname{coord})$. So, picking $(1^{st} \operatorname{coord}) = s$, (free params), then our $(2^{rd} \operatorname{coord}) = t$

(c) If k is a scalar, is
$$\begin{bmatrix} kx \\ ky \end{bmatrix}$$
 in W still?
Yes: $\begin{bmatrix} kx \\ ky \end{bmatrix} = \begin{bmatrix} ks \\ kt \\ k(3s-2t) \end{bmatrix} = \begin{bmatrix} ks \\ kt \\ 3(ks) - 2(kt) \end{bmatrix}$

CA? Generic elements of W are $\begin{bmatrix} a \\ b \\ 3a-2b \end{bmatrix} \text{ and } \begin{bmatrix} c \\ d \\ 3c-2d \end{bmatrix}.$ Is $\begin{bmatrix} a \\ b \\ 3a-2b \end{bmatrix} + \begin{bmatrix} c \\ d \\ 3c-2d \end{bmatrix} \text{ in } W$?

Yes: The sum is = $\begin{bmatrix} a+c \\ b+d \end{bmatrix}$ 3(a+c)-2(b+d)

Since all 3 conditions are met W is a subspace of IR.

Method 2 We saw a generic element of W is of the form $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} s \\ t \\ 3s-2t \end{bmatrix}$, where $s,t \in \mathbb{R}$, and s,t are any values (they are basically free parameters)

Every vector like that can be separated into a sum of two vectors:

$$\begin{bmatrix} s \\ t \\ 3s - 2t \end{bmatrix} = s \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}$$

$$50, \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : 3x-2y-z=0 \right\} (= W)$$

$$= \left\{ \begin{bmatrix} s \\ t \\ 3s-2t \end{bmatrix} : s,t \in \mathbb{R} \right\}$$

$$= \left\{ s \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix} : s_1 t \in \mathbb{R} \right\}$$

$$= \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix} \right\} = \operatorname{span} \left\{ \underline{u}, \underline{v} \right\}$$

Now that we know that $W = \text{span}\{\underline{u}, \underline{v}\}$, it is very easy to check the subspace conditions: defin. of span $W = \text{span}\{\underline{u}, \underline{v}\} = \{\underline{su} + \underline{t}\underline{v} : \underline{s}, \underline{t} \in \mathbb{R}\}$

CA? Generic elements of W are

2 = au + bv 4 = cu + dv

is sum 2+4 in W still?

Yes, b/c $\times + y = (a+c)u + (b+d)y$, which is still a linear combination of u, v so it is in the span $\{u, v\} = W$.

(CS)? Given a generie $z \in W$, we know z = su + ty for some unknown (but free) s,t.

Then $k\underline{x} = k(s\underline{u} + t\underline{v}) = (ks)\underline{u} + (kt)\underline{v}$, still a linear comb. of $\underline{u},\underline{v}$, so still in span $\{\underline{v},\underline{v}\} = W$.

All 3 true, so W is a subspace of R3.

* Note, Method 2 is "better" because of

Thm: If w is a span of one or more vectors from R, then wis outomatically a subspace of R.

Null space:
$$\underline{A}$$
 (nxn). null (\underline{A}) is set of sols to $\underline{A}x = \underline{\emptyset}$ (things that \underline{A} sends to $\underline{\emptyset}$)

$$\frac{\mathcal{E}x}{2}: \begin{bmatrix} 1 & 3 & -15 & 7 \\ 1 & 4 & -19 & 10 \\ 2 & 5 & -26 & 11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ y \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

What is Null(A)? Is Null(A) a subspace of \mathbb{R}^4 ? Compute sols \cong via RREF...

$$\begin{bmatrix} \boxed{1} & 0 & -3 & -2 & 0 \\ 0 & \boxed{1} & -4 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} \chi_3 = S \\ \chi_4 = t \end{array} \qquad \text{free params.}$$
free

$$\begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \end{bmatrix} = \begin{bmatrix} 3s + 2t \\ 4s - 3t \\ s \\ t \end{bmatrix} = s \begin{bmatrix} 3 \\ 4 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix}$$

so solution set, aka null (A) = span $\left\{\begin{bmatrix} 3\\4\\0 \end{bmatrix}, \begin{bmatrix} 2\\-3\\0 \end{bmatrix}\right\}$, $\left\{\begin{bmatrix} by + hm \end{bmatrix}, \begin{bmatrix} A \\ by \end{bmatrix}\right\}$ is a subspace of \mathbb{R}^4

* Null(A) is always a subspace (of whatever
$$\mathbb{R}^n$$
):

 $null(A) = \{ \underline{x} \in \mathbb{R}^n : \underline{A}\underline{x} = \underline{\emptyset} \}$ $(\underline{x}_{(nx_1)}, \underline{\emptyset}_{(nx_1)})$

CA? If
$$\underline{A}\underline{u} = \underline{\emptyset}$$
 $\underline{A}\underline{v} = \underline{\emptyset}$, is $\underline{A}(\underline{u}+\underline{v}) = \underline{\emptyset}$ too?

Yes:
$$\underline{A}(\underline{u}+\underline{v}) = \underline{A}\underline{u} + \underline{A}\underline{v} = \underline{\emptyset} + \underline{\emptyset} = \underline{\emptyset}$$
.

CS? If
$$\underline{Au} = \underline{\emptyset}$$
, is $\underline{A}(\underline{ku}) = \underline{\emptyset}$?
Yes: $\underline{A}(\underline{ku}) = \underline{k}(\underline{Au}) = \underline{k}\underline{\emptyset} = \underline{\emptyset}$.

• Sometimes term kernel (of A) or ker(A) used.